Strong normalization proofs for cut elimination in Gentzen's sequent calculi

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Normalisation Proofs for Cut Elimination in Gentzen's Sequent Calculi

We deene a variant LKsp of the Gentzen sequent calculus LK. In LKsp weakenings or contractions can be done in parallel. This modiication allows us to interpret a symmetrical system of mix elimination rules ELKsp by a nite rewriting system; the termination of this rewriting system can be checked by machines. We give also a self-contained strong normalisation proof by structural induction. We giv...

متن کامل

Modal Sequent Calculi Labelled with Truth Values: Cut Elimination

Cut elimination is shown, in a constructive way, to hold in sequent calculi labelled with truth values for a wide class of normal modal logics, supporting global and local reasoning and allowing a general frame semantics. The complexity of cut elimination is studied in terms of the increase of logical depth of the derivations. A hyperexponential worst case bound is established. The subformula p...

متن کامل

Simple Proofs of Characterizing Strong Normalization for Explicit Substitution Calculi

We present a method of lifting to explicit substitution calculi some characterizations of the strongly normalizing terms of λ-calculus by means of intersection type systems. The method is first illustrated by applying to a composition-free calculus of explicit substitutions, yielding a simpler proof than the previous one by Lengrand et al. Then we present a new intersection type system in the s...

متن کامل

Arithmetical proofs of strong normalization results for symmetric lambda calculi

We give arithmetical proofs of the strong normalization of two symmetric λ-calculi corresponding to classical logic. The first one is the λμμ̃-calculus introduced by Curien & Herbelin. It is derived via the Curry-Howard correspondence from Gentzen’s classical sequent calculus LK in order to have a symmetry on one side between “program” and “context” and on other side between “call-by-name” and “...

متن کامل

Arithmetical Proofs of Strong Normalization Results for Symmetric ?-calculi

We give arithmetical proofs of the strong normalization of two symmetric λ-calculi corresponding to classical logic. The first one is the λμμ̃-calculus introduced by Curien & Herbelin. It is derived via the Curry-Howard correspondence from Gentzen’s classical sequent calculus LK in order to have a symmetry on one side between “program” and “context” and on other side between “call-by-name” and “...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1999

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-46-1-179-225